In this paper we propose a novel data-level algorithm for handling data imbalance in the classification task, Synthetic Majority Undersampling Technique (SMUTE). SMUTE leverages the concept of interpolation of nearby instances, previously introduced in the oversampling setting in SMOTE. Furthermore, we combine both in the Combined Synthetic Oversampling and Undersampling Technique (CSMOUTE), which integrates SMOTE oversampling with SMUTE undersampling. The results of the conducted experimental study demonstrate the usefulness of both the SMUTE and the CSMOUTE algorithms, especially when combined with more complex classifiers, namely MLP and SVM, and when applied on datasets consisting of a large number of outliers. This leads us to a conclusion that the proposed approach shows promise for further extensions accommodating local data characteristics, a direction discussed in more detail in the paper.


翻译:在本文中,我们提出了处理分类任务中数据不平衡的新的数据级算法,即合成多数抽样技术(SMUTE)。SMUTE利用了先前在SMOTE过度抽样环境中引入的附近情况的内插概念。此外,我们在综合合成过度抽样和低取样技术(CSMOUTE)中结合了SMOTE与SMUTE抽样相结合。进行实验研究的结果表明SMUTE和CSMOUTE算法的有用性,特别是当与更复杂的分类器(即MLP和SVM)结合时,当应用在由大量外部单位组成的数据集时。这使我们得出结论,拟议的方法有望进一步扩展,以适应当地数据特征,这是文件中更详细讨论的方向。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Linear Classifiers Under Infinite Imbalance
Arxiv
0+阅读 · 2021年6月10日
Arxiv
6+阅读 · 2020年9月29日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员