The Vision Transformer (ViT) architecture has established its place in computer vision literature, however, training ViTs for RGB-D object recognition remains an understudied topic, viewed in recent literature only through the lens of multi-task pretraining in multiple vision modalities. Such approaches are often computationally intensive, relying on the scale of multiple pretraining datasets to align RGB with 3D information. In this work, we propose a simple yet strong recipe for transferring pretrained ViTs in RGB-D domains for 3D object recognition, focusing on fusing RGB and depth representations encoded jointly by the ViT. Compared to previous works in multimodal Transformers, the key challenge here is to use the attested flexibility of ViTs to capture cross-modal interactions at the downstream and not the pretraining stage. We explore which depth representation is better in terms of resulting accuracy and compare early and late fusion techniques for aligning the RGB and depth modalities within the ViT architecture. Experimental results in the Washington RGB-D Objects dataset (ROD) demonstrate that in such RGB -> RGB-D scenarios, late fusion techniques work better than most popularly employed early fusion. With our transfer baseline, fusion ViTs score up to 95.4% top-1 accuracy in ROD, achieving new state-of-the-art results in this benchmark. We further show the benefits of using our multimodal fusion baseline over unimodal feature extractors in a synthetic-to-real visual adaptation as well as in an open-ended lifelong learning scenario in the ROD benchmark, where our model outperforms previous works by a margin of >8%. Finally, we integrate our method with a robot framework and demonstrate how it can serve as a perception utility in an interactive robot learning scenario, both in simulation and with a real robot.


翻译:愿景变异器(VIT)架构在计算机视觉文献文献中确立了其位置,然而,为 RGB-D 对象识别而培训 VIT 的ViT 仍然是一个研究不足的专题,最近文献中仅通过多种视觉模式的多任务预培训透视镜来看待。这些方法往往在计算上是密集的,依靠多个预培训数据集的规模,使 RGB 与 3D 信息相匹配。在这项工作中,我们提出了一个简单而有力的配方,用于在 RGB-D 域中转让经过预先训练的ViT,用于3D 对象识别,重点是使用由 ViT 联合编码的 RGB-D 和深度表达。与以前在多式联运变异器中的工作相比,这里的关键挑战是使用 ViT 的经证明的灵活性来捕捉下游而非培训前阶段的跨模式互动。我们探索了哪个深度代表在产生准确性和比较早期和晚变异变技术以在 ViT 模型中调整 RGB-D 和深度模式中, 实验结果显示我们在RGB-D-D 的模型模型中, 最先变异化 将一个我们的标准- 的模型化 的模型转换为最接近化的升级的模型,最后的排序方法显示了我们在RVILOD</s>

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员