We investigate the ratio $I(G)$ of the average size of a maximal matching to the size of a maximum matching in a graph $G$. If many maximal matchings have a size close to $\mu(G)$, this graph invariant has a value close to 1. Conversely, if many maximal matchings have a small size, $I(G)$ approaches $\frac{1}{2}$. We propose a general technique to determine the asymptotic behavior of $\avM(G)$ for various classes of graphs. To illustrate the use of this technique, we first show how it makes it possible to find known asymptotic values of $I(G)$ which were typically obtained using generating functions, and we then determine the asymptotic value of $I(G)$ for other families of graphs, highlighting the spectrum of possible values of this graph invariant between $\frac{1}{2}$ and $1$.
翻译:我们调查了最大匹配平均大小的美元(G) $I(G) 与图形中最大匹配大小的平均比例。 如果许多最大匹配的大小接近$\mu(G) $, 这个图表变量值接近1 。 相反, 如果许多最大匹配的大小小, $I(G) 接近$\frac{1 ⁇ 2} 美元。 我们提出一种一般方法, 确定各种图表类别的无效果行为为$\avM(G) $。 为了说明这一技术的使用情况, 我们首先展示了如何找到通常使用生成功能获得的美元(G) 的已知值, 然后我们确定其他图表组的负值为$(G) $(G), 突出该图表变量在$\frac{1 ⁇ 2} 美元和$1美元之间的可能值范围 。