In this paper, we consider the scattering of a time-dependent electromagnetic wave by an elastic body immersed in the lower half-space of a two-layered background medium which is separated by an unbounded rough surface. By proposing two exact transparent boundary conditions (TBCs) on the artificial planes, we reformulate the unbounded scattering problem into an equivalent initial-boundary value problem in a strip domain with the well-posedness and stability proved using the Laplace transform, variational method and energy method. A perfectly matched layer (PML) is then introduced to truncate the interaction problem with two finite layers containing the elastic body, leading to a PML problem in a finite strip domain. We further verify the existence, uniqueness and stability estimate of solution for the PML problem. Finally, we establish the exponential convergence in terms of the thickness and parameters of the PML layers via an error estimate on the electric-to-magnetic (EtM) capacity operators between the original problem and the PML problem.


翻译:在本文中,我们考虑的是,在两层背景介质的低半空中浸泡在两层背景介质下半空的弹性体散射一个有时间依赖的电磁波,而两层背景介质又被一个未沾染的粗浅表面隔开。我们通过在人造飞机上提出两种确切透明的边界条件,将未沾染的散射问题改造成一个条状域的等量初始界限值问题,同时使用拉普尔变换、变异方法和能源方法证明其保有和稳定性。然后引入一个完全匹配的层(PML),将互动问题与含有弹性体的两个有限层(PML)脱钩,导致在有限的条域内出现PML问题。我们进一步核查PML问题解决方案的存在、独特性和稳定性估计。最后,我们通过对原问题与PML层的电磁能力操作者(EtM)能力操作者(EtM)进行错误估计,确定PMLT层的厚度和参数的指数一致。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月25日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员