Accurate human pose estimation is essential for effective Human-Robot Interaction (HRI). By observing a user's arm movements, robots can respond appropriately, whether it's providing assistance or avoiding collisions. While visual perception offers potential for human pose estimation, it can be hindered by factors like poor lighting or occlusions. Additionally, wearable inertial sensors, though useful, require frequent calibration as they do not provide absolute position information. Force-myography (FMG) is an alternative approach where muscle perturbations are externally measured. It has been used to observe finger movements, but its application to full arm state estimation is unexplored. In this letter, we investigate the use of a wearable FMG device that can observe the state of the human arm for real-time applications of HRI. We propose a Transformer-based model to map FMG measurements from the shoulder of the user to the physical pose of the arm. The model is also shown to be transferable to other users with limited decline in accuracy. Through real-world experiments with a robotic arm, we demonstrate collision avoidance without relying on visual perception.
翻译:暂无翻译