Efficient estimation of nonlinear functions of quantum states is crucial for various key tasks in quantum computing, such as entanglement spectroscopy, fidelity estimation, and feature analysis of quantum data. Conventional methods using state tomography and estimating numerous terms of the series expansion are computationally expensive, while alternative approaches based on a purified query oracle impose practical constraints. In this paper, we introduce the quantum state function (QSF) framework by extending the SWAP test via linear combination of unitaries and parameterized quantum circuits. Our framework enables the implementation of arbitrary degree-$n$ polynomial functions of quantum states with precision $\varepsilon$ using $\mathcal{O}(n/\varepsilon^2)$ copies. We further apply QSF for developing quantum algorithms of fundamental tasks, achieving a sample complexity of $\tilde{\mathcal{O}}(1/(\varepsilon^2\kappa))$ for both von Neumann entropy estimation and quantum state fidelity calculations, where $\kappa$ represents the minimal nonzero eigenvalue. Our work establishes a concise and unified paradigm for estimating and realizing nonlinear functions of quantum states, paving the way for the practical processing and analysis of quantum data.
翻译:暂无翻译