In this paper, we propose FXAM (Fast and eXplainable Additive Model), a unified and fast interpretable model for predictive analytics. FXAM extends GAM's (Generalized Additive Model) modeling capability with a unified additive model for numerical, categorical, and temporal features. FXAM conducts a novel training procedure called Three-Stage Iteration (TSI). The three stages correspond to learning over numerical, categorical and temporal features respectively. Each stage learns a local optimum by fixing parameters of other stages. We design joint learning over categorical features and partial learning over temporal features to achieve high accuracy and training efficiency. We prove that TSI is guaranteed to converge to global optimum. We further propose a set of optimization techniques to speed up FXAM's training algorithm to meet the needs of interactive analysis. Evaluations verify that FXAM significantly outperforms existing GAMs in terms of training speed and modeling categorical and temporal features.
翻译:在本文中,我们提出了FXAM(快速和可氧化Additive模型),这是一个统一和快速解释的预测分析模型。FXAM扩展了GAM(通用Additive模型)模型能力,并有一个数字、绝对和时间特征的统一添加模型。FXAM开展了一个叫作“三层迭代(TSI)”的新颖的培训程序。这三个阶段分别相当于对数字、绝对和时间特征的学习。每个阶段通过确定其他阶段的参数学习一个地方最佳的。我们设计了针对绝对特征的联合学习和对时间特征的部分学习,以实现高度准确性和培训效率。我们证明TSI保证会与全球最佳结合。我们进一步提出了一套优化技术,以加快FXAM的培训算法,满足互动分析的需要。评估证实FXAM在培训速度和构建绝对和时间特征模型方面大大超过现有的GAMs。