In the present paper, we consider the integral operator, which acts in Hilbert space and has sine kernel. This operator generates two operator identities and two corresponding canonical differential systems. We find the asymptotics of the corresponding resolvent and Hamiltonians. We use both the method of operator identities and the theory of random matrices.
翻译:在本文件中,我们考虑了在希尔伯特空间活动并拥有正中核心的整体操作者,该操作者产生两个操作者身份和两个相应的卡通差分系统,我们发现相应的固态者和汉密尔顿人无症状,我们既使用操作者身份的方法,又使用随机矩阵理论。