For the one billion sufferers of respiratory disease, managing their disease with inhalers crucially influences their quality of life. Generic treatment plans could be improved with the aid of computational models that account for patient-specific features such as breathing pattern, lung pathology and morphology. Therefore, we aim to develop and validate an automated computational framework for patient-specific deposition modelling. To that end, an image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images. We evaluated the airway and lung morphology produced by our image processing framework, and assessed deposition compared to in vivo data. The 2D-to-3D image processing reproduces airway diameter to 9% median error compared to ground truth segmentations, but is sensitive to outliers of up to 33% due to lung outline noise. Predicted regional deposition gave 5% median error compared to in vivo measurements. The proposed framework is capable of providing patient-specific deposition measurements for varying treatments, to determine which treatment would best satisfy the needs imposed by each patient (such as disease and lung/airway morphology). Integration of patient-specific modelling into clinical practice as an additional decision-making tool could optimise treatment plans and lower the burden of respiratory diseases.


翻译:对于10亿患有呼吸道疾病的人,用吸入器管理他们的疾病,严重影响他们的生活质量。一般治疗计划可以通过计算模型来改进。一般治疗计划可以改进,这些模型考虑到病人特有的特征,例如呼吸模式、肺病理和形态学。因此,我们的目标是为病人特有的沉降建模制定和验证自动计算框架。为此,建议采用图像处理方法,从2D胸X光和3DCT图像中产生3D病人的呼吸呼吸道和呼吸道偏差。我们评估了我们图像处理框架产生的空气和肺部形态学,并比活体数据评估了沉积情况。2D至3D图像处理将空气道直径复制到9%的中位错误,而与地面的真象分解相比,对高达33%的外缘敏感。预测区域沉积提供了5%的中位误,与活体测量相比。拟议框架能够为不同的治疗提供病人特有的沉积测量,以确定哪种治疗最能满足每个病人的额外需要(例如疾病和肺气道/气道形态学),并且将病人选择性病原病原治疗计划纳入临床模型。</s>

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员