Response ranking in dialogues plays a crucial role in retrieval-based conversational systems. In a multi-turn dialogue, to capture the gist of a conversation, contextual information serves as essential knowledge to achieve this goal. In this paper, we present a flexible neural framework that can integrate contextual information from multiple channels. Specifically for the current task, our approach is to provide two information channels in parallel, Fusing Conversation history and domain knowledge extracted from Candidate provenance (FCC), where candidate responses are curated, as contextual information to improve the performance of multi-turn dialogue response ranking. The proposed approach can be generalized as a module to incorporate miscellaneous contextual features for other context-oriented tasks. We evaluate our model on the MSDialog dataset widely used for evaluating conversational response ranking tasks. Our experimental results show that our framework significantly outperforms the previous state-of-the-art models, improving Recall@1 by 7% and MAP by 4%. Furthermore, we conduct ablation studies to evaluate the contributions of each information channel, and of the framework components, to the overall ranking performance, providing additional insights and directions for further improvements.


翻译:响应排名在对话中起着至关重要的作用。在多轮对话中,为了捕捉对话的要点,上下文信息是实现这一目标的基本知识。在本文中,我们提出了一种灵活的神经框架,可以集成来自多个通道的上下文信息。特别针对当前任务,我们的方法是提供两个信息通道并行地,即融合对话历史和从候选源提取的领域知识(FCC),其中候选响应是策划的上下文信息,以提高多轮对话响应排名的性能。所提出的方法可以泛化为模块,以整合其他上下文导向任务的各种上下文特征。我们在广泛用于评估对话响应排名任务的MSDialog数据集上评估了我们的模型。我们的实验结果表明,我们的框架显著优于先前的最先进模型,将Recall@1提高7%,MAP提高4%。此外,我们进行消融研究,以评估每个信息通道和框架组件对总体排序性能的贡献,为进一步改进提供了额外的见解和方向。

0
下载
关闭预览

相关内容

【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
26+阅读 · 2022年9月30日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月23日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关VIP内容
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
26+阅读 · 2022年9月30日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员