We introduce Neural Deformation Graphs for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects. Specifically, we implicitly model a deformation graph via a deep neural network. This neural deformation graph does not rely on any object-specific structure and, thus, can be applied to general non-rigid deformation tracking. Our method globally optimizes this neural graph on a given sequence of depth camera observations of a non-rigidly moving object. Based on explicit viewpoint consistency as well as inter-frame graph and surface consistency constraints, the underlying network is trained in a self-supervised fashion. We additionally optimize for the geometry of the object with an implicit deformable multi-MLP shape representation. Our approach does not assume sequential input data, thus enabling robust tracking of fast motions or even temporally disconnected recordings. Our experiments demonstrate that our Neural Deformation Graphs outperform state-of-the-art non-rigid reconstruction approaches both qualitatively and quantitatively, with 64% improved reconstruction and 62% improved deformation tracking performance.
翻译:我们引入神经变形图, 用于全球一致变形跟踪和三维非硬性天体重建。 具体地说, 我们隐含通过深神经网络模拟变形图。 这个神经变形图并不依赖于任何特定物体的结构, 因此, 可用于一般的非硬性变形跟踪。 我们的方法在全球优化了这个神经变形图, 在非硬性移动天体的深度摄像观测的一定序列上进行这种神经变形图。 基于明确的观点一致性以及框架间图和表面一致性限制, 基础网络受到自我监督方式的培训。 我们进一步优化了该天体的几何测量方法, 以隐含的变形多MLP形状表示 。 我们的方法不包含连续输入数据, 从而能够对快速移动进行强力跟踪, 甚至时间上断开的记录。 我们的实验证明, 我们的神经变形图在质量和数量上都超越了最先进的非硬性重建方法, 64%的重建和62%的变形跟踪性表现。