Over-the-air computation (AirComp) is a known technique in which wireless devices transmit values by analog amplitude modulation so that a function of these values is computed over the communication channel at a common receiver. The physical reason is the superposition properties of the electromagnetic waves, which naturally return sums of analog values. Consequently, the applications of AirComp are almost entirely restricted to analog communication systems. However, the use of digital communications for over-the-air computations would have several benefits, such as error correction, synchronization, acquisition of channel state information, and easier adoption by current digital communication systems. Nevertheless, a common belief is that digital modulations are generally unfeasible for computation tasks because the overlapping of digitally modulated signals returns signals that seem to be meaningless for these tasks. This paper breaks through such a belief and proposes a fundamentally new computing method, named ChannelComp, for performing over-the-air computations by any digital modulation. In particular, we propose digital modulation formats that allow us to compute a wider class of functions than AirComp can compute, and we propose a feasibility optimization problem that ascertains the optimal digital modulation for computing functions over-the-air. The simulation results verify the superior performance of ChannelComp in comparison to AirComp, particularly for the product functions, with around 10 dB improvement of the computation error.


翻译:过载运算(AirComp)是一种已知的技术,其中无线设备通过模拟幅度调制传输数值,以使这些值的函数在共同接收器上通过通信信道被计算。物理原因是电磁波的叠加特性,自然返回模拟值的总和。因此,AirComp的应用几乎完全限制在模拟通信系统中。然而,使用数字通信进行无线计算将具有多种优点,例如错误修正、同步、获取信道状态信息,以及易于当前数字通信系统的采用。尽管如此,普遍信仰是数字调制通常不适用于计算任务,因为数字调制信号的重叠看起来对这些任务毫无意义。本文打破了这种信念,提出了一种基于任何数字调制的基于信道的计算方法,该方法名为“ChannelComp”。“ChannelComp”方法提出了数字调制格式,可以计算 AirComp无法计算的更广泛的函数类,并提出了一个可行性优化问题,确认用于无线计算的最佳数字调制方式。模拟结果验证了 ChannelComp 相对于AirComp的卓越性能,特别是对于乘积函数,计算误差提高了约10 dB。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
129+阅读 · 2023年1月29日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年8月16日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员