Cloud motion winds (CMW) are routinely derived by tracking features in sequential geostationary satellite infrared cloud imagery. In this paper, we explore the cloud motion winds algorithm based on data-driven deep learning approach, and different from conventional hand-craft feature tracking and correlation matching algorithms, we use deep learning model to automatically learn the motion feature representations and directly output the field of cloud motion winds. In addition, we propose a novel large-scale cloud motion winds dataset (CMWD) for training deep learning models. We also try to use a single cloud imagery to predict the cloud motion winds field in a fixed region, which is impossible to achieve using traditional algorithms. The experimental results demonstrate that our algorithm can predict the cloud motion winds field efficiently, and even with a single cloud imagery as input.


翻译:云体运动风(CMW)通常通过跟踪连续地球静止卫星红云图像中的特征而产生。在本文中,我们探索基于数据驱动深层学习方法的云体运动风算法,该算法不同于传统的手工艺特征跟踪和相关匹配算法,我们使用深层次学习模型自动学习运动特征,直接输出云体运动风的领域。此外,我们提出一个新的大型云层运动风数据集(CMWD),用于培训深层学习模型。我们还试图使用单一的云层图像来预测固定区域的云层运动风场,而使用传统的算法是不可能实现的。实验结果表明,我们的算法可以有效地预测云层运动风场,甚至以单一的云图象作为投入。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员