Cloud motion winds (CMW) are routinely derived by tracking features in sequential geostationary satellite infrared cloud imagery. In this paper, we explore the cloud motion winds algorithm based on data-driven deep learning approach, and different from conventional hand-craft feature tracking and correlation matching algorithms, we use deep learning model to automatically learn the motion feature representations and directly output the field of cloud motion winds. In addition, we propose a novel large-scale cloud motion winds dataset (CMWD) for training deep learning models. We also try to use a single cloud imagery to predict the cloud motion winds field in a fixed region, which is impossible to achieve using traditional algorithms. The experimental results demonstrate that our algorithm can predict the cloud motion winds field efficiently, and even with a single cloud imagery as input.
翻译:云体运动风(CMW)通常通过跟踪连续地球静止卫星红云图像中的特征而产生。在本文中,我们探索基于数据驱动深层学习方法的云体运动风算法,该算法不同于传统的手工艺特征跟踪和相关匹配算法,我们使用深层次学习模型自动学习运动特征,直接输出云体运动风的领域。此外,我们提出一个新的大型云层运动风数据集(CMWD),用于培训深层学习模型。我们还试图使用单一的云层图像来预测固定区域的云层运动风场,而使用传统的算法是不可能实现的。实验结果表明,我们的算法可以有效地预测云层运动风场,甚至以单一的云图象作为投入。