Retriever-reader models achieve competitive performance across many different NLP tasks such as open question answering and dialogue conversations. In this work, we notice these models easily overfit the top-rank retrieval passages and standard training fails to reason over the entire retrieval passages. We introduce a learnable passage mask mechanism which desensitizes the impact from the top-rank retrieval passages and prevents the model from overfitting. Controlling the gradient variance with fewer mask candidates and selecting the mask candidates with one-shot bi-level optimization, our learnable regularization strategy enforces the answer generation to focus on the entire retrieval passages. Experiments on different tasks across open question answering, dialogue conversation, and fact verification show that our method consistently outperforms its baselines. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
翻译:重新阅读者模型在许多不同的国家劳工政策不同任务(如开放式答题和对话对话)中实现竞争性业绩。 在这项工作中,我们注意到这些模型很容易地超越顶级检索通道和标准培训,在整个检索通道上都是不合理的。我们引入了一种可学习的通道遮罩机制,使顶级检索通道的影响失去敏感性,防止模型过大。控制梯度差异,减少遮罩候选人人数,以一次性双层优化选择遮罩候选人,我们可学习的正规化战略强制生成答案,以关注整个检索通道。在开放式问题回答、对话交谈和事实核查的不同任务上进行的实验表明,我们的方法始终超越了基线。广泛的实验和通缩研究显示,我们的方法可以是通用的、有效的和对许多国家劳工政策任务有益的。