Activists, journalists, and scholars have long raised critical questions about the relationship between diversity, representation, and structural exclusions in data-intensive tools and services. We build on work mapping the emergent landscape of corporate AI ethics to center one outcome of these conversations: the incorporation of diversity and inclusion in corporate AI ethics activities. Using interpretive document analysis and analytic tools from the values in design field, we examine how diversity and inclusion work is articulated in public-facing AI ethics documentation produced by three companies that create application and services layer AI infrastructure: Google, Microsoft, and Salesforce. We find that as these documents make diversity and inclusion more tractable to engineers and technical clients, they reveal a drift away from civil rights justifications that resonates with the managerialization of diversity by corporations in the mid-1980s. The focus on technical artifacts, such as diverse and inclusive datasets, and the replacement of equity with fairness make ethical work more actionable for everyday practitioners. Yet, they appear divorced from broader DEI initiatives and other subject matter experts that could provide needed context to nuanced decisions around how to operationalize these values. Finally, diversity and inclusion, as configured by engineering logic, positions firms not as ethics owners but as ethics allocators; while these companies claim expertise on AI ethics, the responsibility of defining who diversity and inclusion are meant to protect and where it is relevant is pushed downstream to their customers.


翻译:长期以来,活跃分子、记者和学者一直对数据密集型工具和服务的多样性、代表性和结构性排斥之间的关系提出一些关键问题。我们以工作为基础,绘制公司AI道德的新兴景观,以这些对话的一个成果为中心:将多样性和融入公司AI道德活动;利用设计领域价值观的解释性文件分析和分析工具,我们研究如何在创建应用和服务业的AI基础设施的三家公司(谷歌、微软和销售力量)编写的具有公共形象的AI道德操守文件中阐述多样性和包容性工作。我们发现,由于这些文件使多样性和包容性更加易于工程师和技术客户使用,因此,它们揭示了偏离公民权利理由的一面,而这种理由与1980年代中期公司对多样性的管理有共鸣。 侧重于技术工艺品,如多样化和包容性数据集,以及公平取代公平,使得日常从业人员更容易从事道德工作。然而,它们似乎与更广泛的环境信息倡议和其他主题专家不同,它们可以为关于如何落实这些价值观的微妙决定提供所需的背景。最后,多样性和包容性与民权理由脱开边,这与1980年代中期的公司管理多样性有关,而公司则将道德定位为公司定位,而公司是道德保护,因此,这些道德定位是公司在下,而道德上是推向下游的。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Arxiv
0+阅读 · 2021年6月25日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Top
微信扫码咨询专知VIP会员