We present in this paper a way to transform a constrained statistical inference problem into an unconstrained one in order to be able to use modern computational methods, such as those based on automatic differentiation, GPU computing, stochastic gradients with mini-batch. Unlike the parametrizations classically used in Machine Learning, the parametrizations introduced here are all bijective and are even diffeomorphisms, thus allowing to keep the important properties from a statistical inference point of view, first of all identifiability. This cookbook presents a set of recipes to use to transform a constrained problem into a unconstrained one. For an easy use of parametrizations, this paper is at the same time a cookbook, and a Python package allowing the use of parametrizations with numpy, but also JAX and PyTorch, as well as a high level and expressive interface allowing to easily describe a parametrization to transform a difficult problem of statistical inference into an easier problem addressable with modern optimization tools.
翻译:在本文中,我们提出一种方法,将有限的统计推断问题转变为一个不受限制的问题,以便能够使用现代计算方法,例如基于自动区分、GPU计算、以微型批量制成的随机梯度的方法。 与机械学习中古老使用的对称法不同,这里引入的对称方法都是双向的,甚至甚至是二叶形的,从而可以将重要属性从统计推断点的观点中保留下来,首先是可识别性。本烹饪本提供了一套将受限制的问题转化为不受限制的问题的配方。为了便于使用对称法,本文同时也是一本烹饪手册,以及一套允许使用对称法的配方包,但也包括JAX和PyTorch,以及一个高层次和直观的界面,可以方便地描述一种匹配性,将一个困难的统计推论问题转换成一个较易用现代优化工具解决的问题。