We propose and analyze a semi-discrete parametric finite element scheme for solving the area-preserving curve shortening flow. The scheme is based on Dziuk's approach (SIAM J. Numer. Anal. 36(6): 1808-1830, 1999) for the anisotropic curve shortening flow. We prove that the scheme preserves two fundamental geometric structures of the flow with an initially convex curve: (i) the convexity-preserving property, and (ii) the perimeter-decreasing property. To the best of our knowledge, the convexity-preserving property of numerical schemes which approximate the flow is rigorously proved for the first time. Furthermore, the error estimate of the semi-discrete scheme is established, and numerical results are provided to demonstrate the structure-preserving properties as well as the accuracy of the scheme.
翻译:我们提出并分析一个半分辨参数参数元素计划,用于解决区域保留曲线缩短流量的问题,这个计划基于Dziuk的方法(SIAM J. Numer. Anal. 36(6): 1808-1830,1999年),用于缩短动脉曲线的缩短流量,我们证明这个计划保留了流动的两个基本几何结构,并有一个最初的锥形曲线:(一) 固态保护财产,和(二) 周边侵蚀财产。据我们所知,与流量相近的数字元素的粘合性保存属性首次得到严格证明。此外,半分裂图的错误估计已经确定,并且提供了数字结果,以证明结构保留属性和计划准确性。