Metric search commonly involves finding objects similar to a given sample object. We explore a generalization, where the desired result is a fair tradeoff between multiple query objects. This builds on previous results on complex queries, such as linear combinations. We instead use measures of inequality, like ordered weighted averages, and query existing index structures to find objects that minimize these. We compare our method empirically to linear scan and a post hoc combination of individual queries, and demonstrate a considerable speedup.
翻译:计量搜索通常涉及找到与特定样本对象相类似的对象。 我们探索了一种概括化, 其理想的结果是多个查询对象之间的公平取舍。 这基于以前关于复杂查询的结果, 如线性组合。 我们使用不平等的计量方法, 如定购加权平均值, 并查询现有的索引结构, 以找到最小化的对象。 我们用经验将我们的方法与线性扫描和个别查询的事后组合进行比较, 并展示了相当快的速度 。