Bone age is an important measure for assessing the skeletal and biological maturity of children. Delayed or increased bone age is a serious concern for pediatricians, and needs to be accurately assessed in a bid to determine whether bone maturity is occurring at a rate consistent with chronological age. In this paper, we introduce a unified deep learning framework for bone age assessment using instance segmentation and ridge regression. The proposed approach consists of two integrated stages. In the first stage, we employ an image annotation and segmentation model to annotate and segment the hand from the radiographic image, followed by background removal. In the second stage, we design a regression neural network architecture composed of a pre-trained convolutional neural network for learning salient features from the segmented pediatric hand radiographs and a ridge regression output layer for predicting the bone age. Experimental evaluation on a dataset of hand radiographs demonstrates the competitive performance of our approach in comparison with existing deep learning based methods for bone age assessment.
翻译:骨骼年龄是评估儿童骨骼和生物成熟度的一项重要措施。骨骼年龄的延迟或增加是儿科医生严重关切的一个严重问题,需要准确评估,以确定骨成熟率是否与时间年龄一致。在本文中,我们采用一个统一的深度学习框架,通过例分解和脊柱回归来进行骨骼年龄评估。拟议方法包括两个综合阶段。在第一阶段,我们使用一个图像注解和分解模型,从放射图像中分出手部,然后进行背景切除。在第二阶段,我们设计一个回归神经网络结构,由预先培训的神经神经神经网络组成,以学习分片形手语射线的显著特征,以及用于预测骨骼年龄的峰值回归输出层。对手写射线数据集的实验评估表明,我们的方法与基于骨骼年龄评估的现有深学习方法相比,具有竞争性的表现。