Existing deep learning methods for diagnosis of gastric cancer commonly use convolutional neural network. Recently, the Visual Transformer has attracted great attention because of its performance and efficiency, but its applications are mostly in the field of computer vision. In this paper, a multi-scale visual transformer model, referred to as GasHis-Transformer, is proposed for Gastric Histopathological Image Classification (GHIC), which enables the automatic classification of microscopic gastric images into abnormal and normal cases. The GasHis-Transformer model consists of two key modules: A global information module and a local information module to extract histopathological features effectively. In our experiments, a public hematoxylin and eosin (H&E) stained gastric histopathological dataset with 280 abnormal and normal images are divided into training, validation and test sets by a ratio of 1 : 1 : 2. The GasHis-Transformer model is applied to estimate precision, recall, F1-score and accuracy on the test set of gastric histopathological dataset as 98.0%, 100.0%, 96.0% and 98.0%, respectively. Furthermore, a critical study is conducted to evaluate the robustness of GasHis-Transformer, where ten different noises including four adversarial attack and six conventional image noises are added. In addition, a clinically meaningful study is executed to test the gastrointestinal cancer identification performance of GasHis-Transformer with 620 abnormal images and achieves 96.8% accuracy. Finally, a comparative study is performed to test the generalizability with both H&E and immunohistochemical stained images on a lymphoma image dataset and a breast cancer dataset, producing comparable F1-scores (85.6% and 82.8%) and accuracies (83.9% and 89.4%), respectively. In conclusion, GasHisTransformer demonstrates high classification performance and shows its significant potential in the GHIC task.


翻译:用于诊断胃癌的现有深层学习方法通常使用神经神经网络。最近,视觉变异器因其性能和效率而引起极大关注,但其应用大多在计算机视觉领域。在本文中,一个称为GasHis- Transformine的多级直观变异器模型被建议用于气态心血管图像分类(GHIC),该模型可以将微粒胃图像自动分类为异常和正常情况。GasHis-Extradex模型由两个关键模块组成:一个全球信息模块和一个本地信息模块,以有效提取心血管病特征。在我们实验中,一个公开的肝氧素和eosin(H&E)具有胃心血管病症状的直观变异变异的直观变异变异变异变变变变变变变模型(GHHIC)被分为1:1:2. GHISHS-Expressional 模型用于估算精度、回顾、F1和精确性变异性变异的直变异性变异的直径性变色图像。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
88+阅读 · 2021年6月29日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Reduced order model approach for imaging with waves
Arxiv
0+阅读 · 2021年8月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员