Reconstructing 3D models from large, dense point clouds is critical to enable Virtual Reality (VR) as a platform for entertainment, education, and heritage preservation. Existing 3D reconstruction systems inevitably make trade-offs between three conflicting goals: the efficiency of reconstruction (e.g., time and memory requirements), the visual quality of the constructed scene, and the rendering speed on the VR device. This paper proposes a reconstruction system that simultaneously meets all three goals. The key idea is to avoid the resource-demanding process of reconstructing a high-polygon mesh altogether. Instead, we propose to directly transfer details from the original point cloud to a low polygon mesh, which significantly reduces the reconstruction time and cost, preserves the scene details, and enables real-time rendering on mobile VR devices. While our technique is general, we demonstrate it in reconstructing cultural heritage sites. We for the first time digitally reconstruct the Elmina Castle, a UNESCO world heritage site at Ghana, from billions of laser-scanned points. The reconstruction process executes on low-end desktop systems without requiring high processing power, making it accessible to the broad community. The reconstructed scenes render on Oculus Go in 60 FPS, providing a real-time VR experience with high visual quality. Our project is part of the Digital Elmina effort (http://digitalelmina.org/) between University of Rochester and University of Ghana.


翻译:从大密度的云层重建3D模型对于使虚拟现实(VR)成为娱乐、教育和保存遗产的平台至关重要。现有的3D重建系统不可避免地在三个相互矛盾的目标之间作出权衡:重建的效率(例如时间和记忆要求)、建筑现场的视觉质量以及VR装置的传输速度。本文建议了一个同时满足所有三个目标的重建系统。关键的想法是避免资源需求重建高粒子网格的过程。相反,我们提议将细节从最初的云点直接转移到低多边网格网格网块,这大大缩短重建的时间和成本,保存现场细节,并使移动VR装置能够实时翻版。虽然我们的技术是普遍的,但我们在重建文化遗产地点时展示了这一点。我们第一次从数十亿个激光/扫描点对位于加纳的教科文组织世界遗产网站Elmina城堡进行数字化重建。重建进程在低端桌面系统上进行,不需要高处理能力,而是让广大的加纳大学能够进入,让其进入,使现场细节和图像都能够实时翻版。在我们的VPS/DR图像大学中进行改造。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Neural reality of argument structure constructions
Arxiv
0+阅读 · 2022年2月24日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员