The randomized Kaczmarz algorithm is one of the most popular approaches for solving large-scale linear systems due to its simplicity and efficiency. In this paper, we propose two classes of global randomized Kaczmarz methods for solving large-scale linear matrix equations $AXB=C$, the global randomized block Kaczmarz algorithm and global randomized average block Kaczmarz algorithm. The feature of global randomized block Kaczmarz algorithm is the fact that the current iterate is projected onto the solution space of the sketched matrix equation at each iteration, while the global randomized average block Kaczmarz approach is pseudoinverse-free and therefore can be deployed on parallel computing units to achieve significant improvements in the computational time. We prove that these two methods linearly converge in the mean square to the minimum norm solution $X_*=A^\dag CB^\dag$ of a given linear matrix equation. The convergence rates depend on the geometric properties of the data matrices and their submatrices and on the size of the blocks. Numerical results reveal that our proposed algorithms are efficient and effective for solving large-scale matrix equations. In particular, they can also achieve satisfying performance when applied to image deblurring problems.


翻译:随机的 Kaczmarz 算法是解决大规模线性系统的最流行方法之一, 因为它简单而高效。 在本文中, 我们建议了两种全球随机的 Kaczmarz 方法, 用于解决大型线性矩阵方程式 $AXB=C$, 全球随机的块卡茨马尔兹算法 和全球随机的块平均卡茨马兹算法 。 全球随机的块卡茨马兹算法的特征是, 将当前转机投向每个迭代的草图矩阵方程式的解决方案空间, 而全球随机的平均块块卡茨马尔兹 方法是无假反向的, 因此可以部署在平行的计算单位, 实现计算时间的重大改进。 我们证明, 这两种方法在平均方形中线性与给定的线性矩阵方程式的最小标准解 $X ⁇ A ⁇ dag CB ⁇ dag 。 趋同率取决于数据矩阵的几何特性及其次矩阵和区块大小。 纳运结果显示, 我们提议的算法在大规模解算时, 也能够实现 。

0
下载
关闭预览

相关内容

专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员