Variational Inference (VI) offers a method for approximating intractable likelihoods. In neural VI, inference of approximate posteriors is commonly done using an encoder. Alternatively, encoderless VI offers a framework for learning generative models from data without encountering suboptimalities caused by amortization via an encoder (e.g. in presence of missing or uncertain data). However, in absence of an encoder, such methods often suffer in convergence due to the slow nature of gradient steps required to learn the approximate posterior parameters. In this paper, we introduce Relay VI (RVI), a framework that dramatically improves both the convergence and performance of encoderless VI. In our experiments over multiple datasets, we study the effectiveness of RVI in terms of convergence speed, loss, representation power and missing data imputation. We find RVI to be a unique tool, often superior in both performance and convergence speed to previously proposed encoderless as well as amortized VI models (e.g. VAE).


翻译:在神经六号中,通常使用编码器来推断近似子孙。 或者,无编码的六号提供了从数据中学习基因模型的框架,而不会遇到通过编码器(例如,在缺少或不确定数据的情况下)摊合造成的亚最佳性能。然而,在没有编码器的情况下,由于缺乏编码器,这些方法往往会因学习近似后代参数所需的梯度步骤的缓慢性能而趋于趋同。在本文件中,我们引入了Relay VI(RVI),这是一个大大改进无编码的VI的趋同和性能的框架。在对多个数据集的实验中,我们研究了RVI在趋同速度、损失、代表力和缺失的数据浸透方面的有效性。我们发现RVI是一种独特的工具,其性能和趋同速度往往优于先前提议的无编码的六号模型(例如,VAE)。

0
下载
关闭预览

相关内容

视觉识别系统出自“头脑风暴”一词。所谓头脑风暴(Brain-storming)系统是运用系统的、统一的视觉符号系统。视觉识别是静态的识别符号具体化、视觉化的传达形式,项目最多,层面最广,效果更直接。视觉识别系统属于CIS中的VI,用完整、体系的视觉传达体系,将企业理念、文化特质、服务内容、企业规范等抽象语意转换为具体符号的概念,塑造出独特的企业形象。视觉识别系统分为基本要素系统和应用要素系统两方面。基本要素系统主要包括:企业名称、企业标志、标准字、标准色、象征图案、宣传口语、市场行销报告书等。应用系统主要包括:办公事务用品、生产设备、建筑环境、产品包装、广告媒体、交通工具、衣着制服、旗帜、招牌、标识牌、橱窗、陈列展示等。视觉识别(VI)在CI系统大众所接受,据有主导的地位。
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月23日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
7+阅读 · 2021年10月12日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员