Variational Inference (VI) offers a method for approximating intractable likelihoods. In neural VI, inference of approximate posteriors is commonly done using an encoder. Alternatively, encoderless VI offers a framework for learning generative models from data without encountering suboptimalities caused by amortization via an encoder (e.g. in presence of missing or uncertain data). However, in absence of an encoder, such methods often suffer in convergence due to the slow nature of gradient steps required to learn the approximate posterior parameters. In this paper, we introduce Relay VI (RVI), a framework that dramatically improves both the convergence and performance of encoderless VI. In our experiments over multiple datasets, we study the effectiveness of RVI in terms of convergence speed, loss, representation power and missing data imputation. We find RVI to be a unique tool, often superior in both performance and convergence speed to previously proposed encoderless as well as amortized VI models (e.g. VAE).
翻译:在神经六号中,通常使用编码器来推断近似子孙。 或者,无编码的六号提供了从数据中学习基因模型的框架,而不会遇到通过编码器(例如,在缺少或不确定数据的情况下)摊合造成的亚最佳性能。然而,在没有编码器的情况下,由于缺乏编码器,这些方法往往会因学习近似后代参数所需的梯度步骤的缓慢性能而趋于趋同。在本文件中,我们引入了Relay VI(RVI),这是一个大大改进无编码的VI的趋同和性能的框架。在对多个数据集的实验中,我们研究了RVI在趋同速度、损失、代表力和缺失的数据浸透方面的有效性。我们发现RVI是一种独特的工具,其性能和趋同速度往往优于先前提议的无编码的六号模型(例如,VAE)。