We propose a new method to estimate causal effects from nonexperimental data. Each pair of sample units is first associated with a stochastic 'treatment' - differences in factors between units - and an effect - a resultant outcome difference. It is then proposed that all such pairs can be combined to provide more accurate estimates of causal effects in observational data, provided a statistical model connecting combinatorial properties of treatments to the accuracy and unbiasedness of their effects. The article introduces one such model and a Bayesian approach to combine the $O(n^2)$ pairwise observations typically available in nonexperimnetal data. This also leads to an interpretation of nonexperimental datasets as incomplete, or noisy, versions of ideal factorial experimental designs. This approach to causal effect estimation has several advantages: (1) it expands the number of observations, converting thousands of individuals into millions of observational treatments; (2) starting with treatments closest to the experimental ideal, it identifies noncausal variables that can be ignored in the future, making estimation easier in each subsequent iteration while departing minimally from experiment-like conditions; (3) it recovers individual causal effects in heterogeneous populations. We evaluate the method in simulations and the National Supported Work (NSW) program, an intensively studied program whose effects are known from randomized field experiments. We demonstrate that the proposed approach recovers causal effects in common NSW samples, as well as in arbitrary subpopulations and an order-of-magnitude larger supersample with the entire national program data, outperforming Statistical, Econometrics and Machine Learning estimators in all cases...


翻译:我们提出一个新的方法来估计非实验性数据造成的因果关系。 每对抽样单位首先与随机的“处理”相关—— 单位之间的差异—— 以及效果—— 由此产生的结果差异。 然后,我们提议,所有这些对的组合可以结合,以提供观察数据中更准确的因果关系估计,提供了将治疗的组合特性与其效果的准确性和公正性联系起来的统计模型。文章引入了一种这种模型和巴耶斯式的方法,将非实验性数据中通常可获得的$O(n)2美元双向观测结合起来。这还导致将非实验性数据集解释为理想因素实验性实验设计的不完整或杂音版本。这种对因果关系估计方法有若干好处:(1) 它扩大了观察数量,将数千人转换成数百万次观察性治疗;(2) 从最接近实验性理想的治疗开始,它确定了未来可以忽略的所有非实验性变量,使以后的每个观察性观察都更容易进行估算,同时从类似实验性条件中最低限度地评估;(3) 它将非实验性数据集解释为不完全性的国家实验性方案效果,我们所研究的实地实验中的一项常规性实验性实验性评估了一种常规性结果。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Policy choice in experiments with unknown interference
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员