Measuring semantic similarity between job titles is an essential functionality for automatic job recommendations. This task is usually approached using supervised learning techniques, which requires training data in the form of equivalent job title pairs. In this paper, we instead propose an unsupervised representation learning method for training a job title similarity model using noisy skill labels. We show that it is highly effective for tasks such as text ranking and job normalization.


翻译:测量职位标题之间语义相似性是自动工作推荐的基本功能。 这个任务通常使用有监督学习技术来处理,需要以等价职位标题对的形式进行培训数据。 在本文中,我们提出了一种使用嘈杂技能标签进行职位标题相似性模型训练的无监督表示学习方法。 我们证明它对于文本排名和职位规范等任务非常有效。

0
下载
关闭预览

相关内容

【AAAI2022】GearNet:弱监督领域自适应的逐步对偶学习
专知会员服务
24+阅读 · 2022年1月20日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
校招 | Girl for IT — 初入职场的妳们
微软招聘
0+阅读 · 2022年6月23日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
14+阅读 · 2019年9月11日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
VIP会员
相关资讯
校招 | Girl for IT — 初入职场的妳们
微软招聘
0+阅读 · 2022年6月23日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员