Recently, deep neural network models have achieved impressive results in various research fields. Come with it, an increasing number of attentions have been attracted by deep super-resolution (SR) approaches. Many existing methods attempt to restore high-resolution images from directly down-sampled low-resolution images or with the assumption of Gaussian degradation kernels with additive noises for their simplicities. However, in real-world scenarios, highly complex kernels and non-additive noises may be involved, even though the distorted images are visually similar to the clear ones. Existing SR models are facing difficulties to deal with real-world images under such circumstances. In this paper, we introduce a new kernel agnostic SR framework to deal with real-world image SR problem. The framework can be hanged seamlessly to multiple mainstream models. In the proposed framework, the degradation kernels and noises are adaptively modeled rather than explicitly specified. Moreover, we also propose an iterative supervision process and frequency-attended objective from orthogonal perspectives to further boost the performance. The experiments validate the effectiveness of the proposed framework on multiple real-world datasets.


翻译:最近,深心神经网络模型在各个研究领域取得了令人印象深刻的成果。随之而来的是,深超分辨率(SR)方法吸引了越来越多的注意力。许多现有方法试图从直接从下部取样的低分辨率图像中恢复高分辨率图像,或者假设高斯退化内核具有添加性噪声以使其简单化。然而,在现实世界的情景中,可能涉及高度复杂的内核和不添加的噪音,即使扭曲的图像与清晰的图像相近。在这种情形下,现有的SR模型在处理真实世界图像方面正面临困难。在本文中,我们引入一个新的内核敏感性SR框架来处理真实世界图像SR问题。框架可以无缝地挂在多个主流模型中。在拟议的框架中,退化内核和噪音是适应性模型而不是明确规定的。此外,我们还提议了一个迭代监督进程和从或纵观角度的频率目标来进一步提升性能。实验验证了拟议的多现实世界数据框架的有效性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
162+阅读 · 2020年5月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
论文 | CVPR2017有哪些值得读的Image Caption论文?
黑龙江大学自然语言处理实验室
16+阅读 · 2017年12月1日
CVPR2017有哪些值得读的Image Caption论文?
PaperWeekly
10+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Hierarchy Parsing for Image Captioning
Arxiv
6+阅读 · 2019年9月10日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
论文 | CVPR2017有哪些值得读的Image Caption论文?
黑龙江大学自然语言处理实验室
16+阅读 · 2017年12月1日
CVPR2017有哪些值得读的Image Caption论文?
PaperWeekly
10+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员