Stochastic differential equations (SDEs) and the Kolmogorov partial differential equations (PDEs) associated to them have been widely used in models from engineering, finance, and the natural sciences. In particular, SDEs and Kolmogorov PDEs, respectively, are highly employed in models for the approximative pricing of financial derivatives. Kolmogorov PDEs and SDEs, respectively, can typically not be solved explicitly and it has been and still is an active topic of research to design and analyze numerical methods which are able to approximately solve Kolmogorov PDEs and SDEs, respectively. Nearly all approximation methods for Kolmogorov PDEs in the literature suffer under the curse of dimensionality or only provide approximations of the solution of the PDE at a single fixed space-time point. In this paper we derive and propose a numerical approximation method which aims to overcome both of the above mentioned drawbacks and intends to deliver a numerical approximation of the Kolmogorov PDE on an entire region $[a,b]^d$ without suffering from the curse of dimensionality. Numerical results on examples including the heat equation, the Black-Scholes model, the stochastic Lorenz equation, and the Heston model suggest that the proposed approximation algorithm is quite effective in high dimensions in terms of both accuracy and speed.


翻译:在工程、金融、自然科学等模型中广泛使用与它们相关的斯托孔差异方程和科尔莫戈洛夫部分差异方程。特别是,SDEs和科尔莫戈罗夫PDEs分别在金融衍生物的近似定价模型中高度使用。科尔莫戈罗夫 PDEs和SDEs通常无法明确解决,它们过去和现在都是研究设计和分析数字方法的积极课题,这些方法能够分别解决科尔莫戈洛夫 PDEs和SDEs。科莫戈罗夫 PDEs几乎所有的近似方法都受到维度的诅咒,或者仅仅在一个固定的时间点提供PDE解决方案的近似值。在本文中,我们提出和提议一个数字近似方法,旨在克服上述两方面的缺陷,并打算在整个区域提供科尔莫戈洛戈罗夫PDE的数值近似近似值,B]d$,而不必受度模型的维度的诅咒。文献中的科尔莫戈洛戈罗夫PDEs几乎全部近似方法都受到维度的诅咒,或者仅仅在一个固定的时间点点提供PDE解决办法的近似近似近似近似近似近似近似近似近似近似近似近似近似近似近似近似近似近似近似近似近似近似点值的答案。在本方方程方程方程等等等等方程的图。在本方程中,在高正方方方程图中建议。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
44+阅读 · 2019年10月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
14+阅读 · 2019年9月11日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
44+阅读 · 2019年10月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员