Large Bayesian VARs are now widely used in empirical macroeconomics. One popular shrinkage prior in this setting is the natural conjugate prior as it facilitates posterior simulation and leads to a range of useful analytical results. This is, however, at the expense of modeling flexibility, as it rules out cross-variable shrinkage -- i.e., shrinking coefficients on lags of other variables more aggressively than those on own lags. We develop a prior that has the best of both worlds: it can accommodate cross-variable shrinkage, while maintaining many useful analytical results, such as a closed-form expression of the marginal likelihood. This new prior also leads to fast posterior simulation -- for a BVAR with 100 variables and 4 lags, obtaining 10,000 posterior draws takes less than half a minute on a standard desktop. We demonstrate the usefulness of the new prior via a structural analysis using a 15-variable VAR with sign restrictions to identify 5 structural shocks.
翻译:大型贝叶西亚变压法现在被广泛用于实证宏观经济。在这个背景下,一个流行的变压法现在被广泛用于实证宏观经济。在这个背景下,一个流行的变压法是先前的自然结合,因为它有利于后继模拟,并导致一系列有用的分析结果。然而,这是以模型灵活性为代价的,因为它排除了跨变量缩压法,也就是说,其他变量的滞后系数比自己变压的慢得多。我们开发了一个具有两个世界最佳特点的先变法:它可以容纳跨变量缩压法,同时保持许多有用的分析结果,例如边际可能性的封闭式表达法。这个新的前变压法还导致快速的后继模拟 -- -- 对于一个具有100个变量和4个滞后的BVAR来说,获得10 000个外延法则在标准桌面上需要不到半分钟的时间。我们用15个可变的变压法变压法来显示新结构分析的效用,我们使用15个标志限制来识别5个结构性冲击。