The proliferation of unmanned aircraft systems (UAS) has caused airspace regulation authorities to examine the interoperability of these aircraft with collision avoidance systems initially designed for large transport category aircraft. Limitations in the currently mandated TCAS led the Federal Aviation Administration to commission the development of a new solution, the Airborne Collision Avoidance System X (ACAS X), designed to enable a collision avoidance capability for multiple aircraft platforms, including UAS. While prior research explored using deep reinforcement learning algorithms (DRL) for collision avoidance, DRL did not perform as well as existing solutions. This work explores the benefits of using a DRL collision avoidance system whose parameters are tuned using a surrogate optimizer. We show the use of a surrogate optimizer leads to DRL approach that can increase safety and operational viability and support future capability development for UAS collision avoidance.
翻译:无人驾驶航空器系统(无人驾驶航空器系统)的扩散促使空气管制当局审查这些飞机与最初为大型运输类飞机设计的避免碰撞系统的互操作性,目前授权的TCAS的局限性导致联邦航空管理局委托开发一个新的解决办法,即空载避免碰撞系统X(ACAS X),其目的是使包括无人驾驶航空器系统在内的多个航空器平台具有避免碰撞的能力。虽然以前曾研究过利用深强化学习算法(DRL)避免碰撞,但DRL没有和现有解决办法一样发挥作用,这项工作探索了使用DRL避免碰撞系统的好处,该系统的参数使用代孕优化器加以调整。我们表明,使用代孕优化器可导致DRL方法,提高安全性和操作可行性,支持今后开发避免无人驾驶航空器碰撞的能力。