Efficient continual learning in humans is enabled by a rich set of neurophysiological mechanisms and interactions between multiple memory systems. The brain efficiently encodes information in non-overlapping sparse codes, which facilitates the learning of new associations faster with controlled interference with previous associations. To mimic sparse coding in DNNs, we enforce activation sparsity along with a dropout mechanism which encourages the model to activate similar units for semantically similar inputs and have less overlap with activation patterns of semantically dissimilar inputs. This provides us with an efficient mechanism for balancing the reusability and interference of features, depending on the similarity of classes across tasks. Furthermore, we employ sparse coding in a multiple-memory replay mechanism. Our method maintains an additional long-term semantic memory that aggregates and consolidates information encoded in the synaptic weights of the working model. Our extensive evaluation and characteristics analysis show that equipped with these biologically inspired mechanisms, the model can further mitigate forgetting.


翻译:人类的高效持续学习是由一系列丰富的神经生理机制和多个记忆系统之间的相互作用所促成的。大脑有效地将信息编码成非重叠的稀有代码,这有助于学习新协会,对以前的协会进行控制干扰,从而更快地学习新协会。要模仿DNN的稀有编码,我们实施激活宽度机制,同时采用一种辍学机制,鼓励模型激活类似单元,用于进行语义相似的输入,并减少与语义不同输入的激活模式的重叠。这为我们提供了一个有效的机制,根据不同任务班级的相似性,平衡特征的可重复性和干扰性。此外,我们还在多模重重弹机制中使用了稀疏的编码。我们的方法保持了额外的长期语义记忆,将信息汇总并整合到工作模型的合成重量中。我们的广泛评估和特征分析显示,这些生物启发机制装备了这些模型,可以进一步减少遗忘。

0
下载
关闭预览

相关内容

这种方法被称为Sparse Coding。通俗的说,就是将一个信号表示为一组基的线性组合,而且要求只需要较少的几个基就可以将信号表示出来
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2022年10月20日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年6月30日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员