Predicting the future trajectories of on-road vehicles is critical for autonomous driving. In this paper, we introduce a novel prediction framework called PRIME, which stands for Prediction with Model-based Planning. Unlike recent prediction works that utilize neural networks to model scene context and produce unconstrained trajectories, PRIME is designed to generate accurate and feasibility-guaranteed future trajectory predictions. PRIME guarantees the trajectory feasibility by exploiting a model-based generator to produce future trajectories under explicit constraints and enables accurate multimodal prediction by utilizing a learning-based evaluator to select future trajectories. We conduct experiments on the large-scale Argoverse Motion Forecasting Benchmark, where PRIME outperforms the state-of-the-art methods in prediction accuracy, feasibility, and robustness under imperfect tracking.
翻译:预测公路上车辆的未来轨迹对于自主驾驶至关重要。 在本文中,我们引入了名为“PRIME”的新颖预测框架,它代表以模型为基础的规划预测。与最近利用神经网络模拟现场环境并产生不受限制的轨迹的预测工程不同,PRIME旨在生成准确和有可行性的今后轨迹预测。 PRIME通过利用基于模型的发电机在明确限制下生成未来轨迹来保证轨迹的可行性,并通过利用基于学习的评价员选择未来的轨迹来进行准确的多式联运预测。我们进行了大规模反向预测基准实验,在大规模反向预测基准中,PRIME在不完善的跟踪中优于预测准确性、可行性和稳健性的最新方法。