Implementing systems based on Machine Learning to detect fraud and other Non-Technical Losses (NTL) is challenging: the data available is biased, and the algorithms currently used are black-boxes that cannot be either easily trusted or understood by stakeholders. This work explains our human-in-the-loop approach to mitigate these problems in a real system that uses a supervised model to detect Non-Technical Losses (NTL) for an international utility company from Spain. This approach exploits human knowledge (e.g. from the data scientists or the company's stakeholders) and the information provided by explanatory methods to guide the system during the training process. This simple, efficient method that can be easily implemented in other industrial projects is tested in a real dataset and the results show that the derived prediction model is better in terms of accuracy, interpretability, robustness and flexibility.


翻译:执行基于机器学习系统以发现欺诈和其他非技术损失(NTL)的系统具有挑战性:现有数据存在偏差,目前使用的算法是黑箱,利益攸关方无法轻易信任或理解,这项工作解释了我们在实际系统中如何使用监督模型为西班牙一家国际公用事业公司检测非技术损失(NTL),在实际系统中如何减轻这些问题。这种方法利用人类知识(例如来自数据科学家或公司利益攸关方)和解释方法提供的信息来指导培训过程中的系统。在其他工业项目中易于执行的这一简单有效的方法,在真实数据集中进行测试,结果显示衍生的预测模型在准确性、可解释性、稳健性和灵活性方面效果更好。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年10月13日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
5+阅读 · 2018年10月4日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员