Electronic health records (EHRs) store an extensive array of patient information, encompassing medical histories, diagnoses, treatments, and test outcomes. These records are crucial for enabling healthcare providers to make well-informed decisions regarding patient care. Summarizing clinical notes further assists healthcare professionals in pinpointing potential health risks and making better-informed decisions. This process contributes to reducing errors and enhancing patient outcomes by ensuring providers have access to the most pertinent and current patient data. Recent research has shown that incorporating prompts with large language models (LLMs) substantially boosts the efficacy of summarization tasks. However, we show that this approach also leads to increased output variance, resulting in notably divergent outputs even when prompts share similar meanings. To tackle this challenge, we introduce a model-agnostic Soft Prompt-Based Calibration (SPeC) pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization. Experimental findings on multiple clinical note tasks and LLMs indicate that our method not only bolsters performance but also effectively curbs variance for various LLMs, providing a more uniform and dependable solution for summarizing vital medical information.
翻译:电子病历(EHR)存储了大量的患者信息,包括病史、诊断、治疗和检测结果。这些记录对于医疗保健提供者做出明智的关于病人护理的决策至关重要。而临床笔记的摘要进一步帮助医疗保健专业人员确定潜在的健康风险,并做出更明智的决策。这个过程有助于减少错误,并通过确保提供者能够访问最相关和最新的患者数据来提高患者的治疗效果。最近的研究表明,将提示与大型语言模型(LLM)结合使用可以显著提高摘要任务的效率。但是,我们发现该方法也会导致输出变异性增加,即使提示具有相似的含义时,输出也会有明显不同。为了解决这个挑战,我们引入一种基于模型的可调整的软提示校准(SPeC)管道,采用软提示来减少方差,同时保留提示式摘要的优势。多项临床笔记任务和LLMs的实验结果表明,我们的方法不仅提高了性能,而且有效地控制了各种LLMs的方差,为摘要重要的医疗信息提供了一种更加统一和可靠的解决方案。