Reasoning about tabular information presents unique challenges to modern NLP approaches which largely rely on pre-trained contextualized embeddings of text. In this paper, we study these challenges through the problem of tabular natural language inference. We propose easy and effective modifications to how information is presented to a model for this task. We show via systematic experiments that these strategies substantially improve tabular inference performance.
翻译:以表格形式说明信息对现代国家劳工政策办法提出了独特的挑战,这些办法主要依靠经过事先培训的文字背景嵌入;在本文中,我们通过表格式自然语言推论问题研究这些挑战;我们建议对如何将信息提交这一任务的模式进行简单有效的修改;我们通过系统实验表明,这些战略大大改善了表格推论的绩效。