Integrating whole-slide images (WSIs) and bulk transcriptomics for predicting patient survival can improve our understanding of patient prognosis. However, this multimodal task is particularly challenging due to the different nature of these data: WSIs represent a very high-dimensional spatial description of a tumor, while bulk transcriptomics represent a global description of gene expression levels within that tumor. In this context, our work aims to address two key challenges: (1) how can we tokenize transcriptomics in a semantically meaningful and interpretable way?, and (2) how can we capture dense multimodal interactions between these two modalities? Specifically, we propose to learn biological pathway tokens from transcriptomics that can encode specific cellular functions. Together with histology patch tokens that encode the different morphological patterns in the WSI, we argue that they form appropriate reasoning units for downstream interpretability analyses. We propose fusing both modalities using a memory-efficient multimodal Transformer that can model interactions between pathway and histology patch tokens. Our proposed model, SURVPATH, achieves state-of-the-art performance when evaluated against both unimodal and multimodal baselines on five datasets from The Cancer Genome Atlas. Our interpretability framework identifies key multimodal prognostic factors, and, as such, can provide valuable insights into the interaction between genotype and phenotype, enabling a deeper understanding of the underlying biological mechanisms at play. We make our code public at: https://github.com/ajv012/SurvPath.
翻译:---
将WSI和基因组转录组学结合起来预测患者的生存状况可以改善我们对患者预后的理解。然而,由于这些数据的不同性质,这种多模态任务变得特别具有挑战性:WSI表示肿瘤的高维空间描述,而基因组转录组学则表示该肿瘤内基因表达水平的全局描述。在这种情况下,我们的工作旨在解决两个关键问题:(1)如何以语义上有意义和可解释的方式编码转录组学中的生物信号通路? (2)如何捕捉这两种模态之间的密集多模式交互?具体而言,我们提出从转录组学中学习生物通路标记,以编码特定的细胞功能。与编码WSI中不同形态模式的组织学图像补丁标记一起,我们认为它们形成了下游可解释性分析的适当推理单元。我们提出使用内存高效的多模态Transformer融合两种模态,以建模信号通路和组织学图像补丁标记之间的交互。我们提出的模型SURVPATH在来自The Cancer Genome Atlas的五个数据集上,与单一模态和多模态基线相比获得了最先进的性能。我们的可解释性框架识别了关键的多模态预后因素,因此可以为基因型和表型之间的相互作用提供有价值的见解,从而实现对基本生物机制的更深入的理解。我们将代码公开在: https://github.com/ajv012/SurvPath。