Existing question answering (QA) datasets derived from electronic health records (EHR) are artificially generated and consequently fail to capture realistic physician information needs. We present Discharge Summary Clinical Questions (DiSCQ), a newly curated question dataset composed of 2,000+ questions paired with the snippets of text (triggers) that prompted each question. The questions are generated by medical experts from 100+ MIMIC-III discharge summaries. We analyze this dataset to characterize the types of information sought by medical experts. We also train baseline models for trigger detection and question generation (QG), paired with unsupervised answer retrieval over EHRs. Our baseline model is able to generate high quality questions in over 62% of cases when prompted with human selected triggers. We release this dataset (and all code to reproduce baseline model results) to facilitate further research into realistic clinical QA and QG: https://github.com/elehman16/discq.
翻译:从电子健康记录(EHR)中得出的现有回答问题数据集是人为生成的,因此无法捕捉到现实的医生信息需求。我们提出了排放简要临床问题(DiscQ),这是一个新整理的问题数据集,由2 000个以上的问题组成,与每个问题的文本片段(触发器)相配,每个问题都有2 000个新版问题数据集,由医学专家从100+MIMIMIC-III排放摘要中提出这些问题。我们分析这一数据集,以说明医疗专家所寻求的信息类型。我们还为触发检测和问题生成建立了基准模型,同时对 EHR 进行了不受监督的回复检索。我们的基线模型能够在人类选中的触发器下产生超过62%的高质量问题。我们发布这一数据集(以及复制基线模型结果的所有代码),以便利对现实的临床QA和QG进行进一步研究:https://github.com/elehman16/discq。