This paper introduces a new learning-based approach for approximately solving the Kidney-Exchange Problem (KEP), an NP-hard problem on graphs. The problem consists of, given a pool of kidney donors and patients waiting for kidney donations, optimally selecting a set of donations to optimize the quantity and quality of transplants performed while respecting a set of constraints about the arrangement of these donations. The proposed technique consists of two main steps: the first is a Graph Neural Network (GNN) trained without supervision; the second is a deterministic non-learned search heuristic that uses the output of the GNN to find paths and cycles. To allow for comparisons, we also implemented and tested an exact solution method using integer programming, two greedy search heuristics without the machine learning module, and the GNN alone without a heuristic. We analyze and compare the methods and conclude that the learning-based two-stage approach is the best solution quality, outputting approximate solutions on average 1.1 times more valuable than the ones from the deterministic heuristic alone.
翻译:本文介绍了一种新的基于学习的方法来近似解决肾移植问题。该问题是一个针对图结构的 NP-hard 问题,其目的是在满足一组限制条件的前提下,从一个肾脏供体和等待肾脏捐赠的患者池中选择一组肾脏捐赠以优化执行的移植数量和质量。该方法包括两个主要步骤:第一个是一个无监督训练的图神经网络(GNN),第二个是一个非学习的确定性搜索启发式方法,该方法使用 GNN 的输出来寻找路径和循环。为了进行比较,我们还实施和测试了一种采用整数规划的精确解法、两个没有机器学习模块的贪心搜索启发式方法以及一个单独使用 GNN 的启发式方法。我们分析和比较这些方法,并得出结论,即基于学习的两阶段方法具有最佳解决质量,并且平均输出的近似解价值是仅使用确定性启发式方法的 1.1 倍。