Background and Aim: Recently, deep learning using convolutional neural network has been used successfully to classify the images of breast cells accurately. However, the accuracy of manual classification of those histopathological images is comparatively low. This research aims to increase the accuracy of the classification of breast cancer images by utilizing a Patch-Based Classifier (PBC) along with deep learning architecture. Methodology: The proposed system consists of a Deep Convolutional Neural Network (DCNN) that helps in enhancing and increasing the accuracy of the classification process. This is done by the use of the Patch-based Classifier (PBC). CNN has completely different layers where images are first fed through convolutional layers using hyperbolic tangent function together with the max-pooling layer, drop out layers, and SoftMax function for classification. Further, the output obtained is fed to a patch-based classifier that consists of patch-wise classification output followed by majority voting. Results: The results are obtained throughout the classification stage for breast cancer images that are collected from breast-histology datasets. The proposed solution improves the accuracy of classification whether or not the images had normal, benign, in-situ, or invasive carcinoma from 87% to 94% with a decrease in processing time from 0.45 s to 0.2s on average. Conclusion: The proposed solution focused on increasing the accuracy of classifying cancer in the breast by enhancing the image contrast and reducing the vanishing gradient. Finally, this solution for the implementation of the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique and modified tangent function helps in increasing the accuracy.


翻译:目标:最近,利用神经神经网络进行深层学习,成功地对乳房细胞图像进行了准确的分类。然而,这些组织病理图像的手工分类准确性相对较低。这项研究的目的是通过使用基于补丁的分类器(PBC)以及深层次学习架构,提高乳腺癌图像分类的准确性。方法:拟议系统包括一个有助于提高和增加分类过程准确性的深层神经网络(DCNN),这是通过使用基于补丁的分类器(PBC)来完成的。CNN拥有完全不同的层,其中图像首先通过包含最大层的超叶色素功能和最高层的超叶色相图象图像手工分类的准确性输入。此外,所获得的产出被输入到一个基于补丁基的分类器,包括偏差的分类输出输出输出,随后多数投票。结果:通过基于乳腺癌分类阶段收集的乳腺癌图像的分类结果通过基于乳房-脑分类数据集(PBC)。 CNNN有完全不同的层层,其中图像首先通过使用高压层层的精确性调调制,同时使用高压层的调调调调制,同时使用高压层图层、低层层和软质的平底压分析,从而将图像的平平平平整平整平整平平平平平平平平平平平整。 提高平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
课程 | Andrew Ng 深度学习课程笔记3
黑龙江大学自然语言处理实验室
3+阅读 · 2017年9月15日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
VIP会员
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
课程 | Andrew Ng 深度学习课程笔记3
黑龙江大学自然语言处理实验室
3+阅读 · 2017年9月15日
Top
微信扫码咨询专知VIP会员