Background and Aim: Recently, deep learning using convolutional neural network has been used successfully to classify the images of breast cells accurately. However, the accuracy of manual classification of those histopathological images is comparatively low. This research aims to increase the accuracy of the classification of breast cancer images by utilizing a Patch-Based Classifier (PBC) along with deep learning architecture. Methodology: The proposed system consists of a Deep Convolutional Neural Network (DCNN) that helps in enhancing and increasing the accuracy of the classification process. This is done by the use of the Patch-based Classifier (PBC). CNN has completely different layers where images are first fed through convolutional layers using hyperbolic tangent function together with the max-pooling layer, drop out layers, and SoftMax function for classification. Further, the output obtained is fed to a patch-based classifier that consists of patch-wise classification output followed by majority voting. Results: The results are obtained throughout the classification stage for breast cancer images that are collected from breast-histology datasets. The proposed solution improves the accuracy of classification whether or not the images had normal, benign, in-situ, or invasive carcinoma from 87% to 94% with a decrease in processing time from 0.45 s to 0.2s on average. Conclusion: The proposed solution focused on increasing the accuracy of classifying cancer in the breast by enhancing the image contrast and reducing the vanishing gradient. Finally, this solution for the implementation of the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique and modified tangent function helps in increasing the accuracy.
翻译:目标:最近,利用神经神经网络进行深层学习,成功地对乳房细胞图像进行了准确的分类。然而,这些组织病理图像的手工分类准确性相对较低。这项研究的目的是通过使用基于补丁的分类器(PBC)以及深层次学习架构,提高乳腺癌图像分类的准确性。方法:拟议系统包括一个有助于提高和增加分类过程准确性的深层神经网络(DCNN),这是通过使用基于补丁的分类器(PBC)来完成的。CNN拥有完全不同的层,其中图像首先通过包含最大层的超叶色素功能和最高层的超叶色相图象图像手工分类的准确性输入。此外,所获得的产出被输入到一个基于补丁基的分类器,包括偏差的分类输出输出输出,随后多数投票。结果:通过基于乳腺癌分类阶段收集的乳腺癌图像的分类结果通过基于乳房-脑分类数据集(PBC)。 CNNN有完全不同的层层,其中图像首先通过使用高压层层的精确性调调制,同时使用高压层的调调调调制,同时使用高压层图层、低层层和软质的平底压分析,从而将图像的平平平平整平整平整平平平平平平平平平平平整。 提高平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平