Complex systems often contain feedback loops that can be described as cyclic causal models. Intervening in such systems may lead to counter-intuitive effects, which cannot be inferred directly from the graph structure. After establishing a framework for differentiable interventions based on Lie groups, we take advantage of modern automatic differentiation techniques and their application to implicit functions in order to optimize interventions in cyclic causal models. We illustrate the use of this framework by investigating scenarios of transition to sustainable economies.


翻译:复杂系统通常包含反馈循环,可称为循环因果模型,在这种系统中进行干涉可能导致反直觉效应,无法直接从图表结构中推断出来。在建立了基于“Lie”集团的不同干预框架之后,我们利用现代自动区分技术及其应用于隐含功能,以优化循环因果模型中的干预。我们通过调查向可持续经济过渡的情景来说明这一框架的使用情况。

0
下载
关闭预览

相关内容

专知会员服务
95+阅读 · 2021年8月28日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
14+阅读 · 2020年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
9+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
95+阅读 · 2021年8月28日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员