Two important problems on almost perfect nonlinear (APN) functions are the enumeration and equivalence problems. In this paper, we solve these two problems for any biprojective APN function family by introducing a strong group theoretic method for those functions. Roughly half of the known APN families of functions on even dimensions are biprojective. By our method, we settle the equivalence problem for all known biprojective APN functions. Furthermore, we give a new family of biprojective APN functions. Using our method, we count the number of inequivalent APN functions in all known biprojective APN families and show that the new family found in this paper gives exponentially many new inequivalent APN functions. Quite recently, the Taniguchi family of APN functions was shown to contain an exponential number of inequivalent APN functions by Kaspers and Zhou (J. Cryptol. 34 (1), 2021) which improved their previous count (J. Comb. Th. A 186, 2022) for the Zhou-Pott family. Our group theoretic method substantially simplifies the work required for proving those results and provides a generic natural method for every family in the large super-class of biprojective APN functions that contains these two family along with many others.
翻译:暂无翻译