With the advent of Deep Learning, the field of machine learning (ML) has surpassed human-level performance on diverse classification tasks. At the same time, there is a stark need to characterize and quantify reliability of a model's prediction on individual samples. This is especially true in application of such models in safety-critical domains of industrial control and healthcare. To address this need, we link the question of reliability of a model's individual prediction to the epistemic uncertainty of the model's prediction. More specifically, we extend the theory of Justified True Belief (JTB) in epistemology, created to study the validity and limits of human-acquired knowledge, towards characterizing the validity and limits of knowledge in supervised classifiers. We present an analysis of neural network classifiers linking the reliability of its prediction on an input to characteristics of the support gathered from the input and latent spaces of the network. We hypothesize that the JTB analysis exposes the epistemic uncertainty (or ignorance) of a model with respect to its inference, thereby allowing for the inference to be only as strong as the justification permits. We explore various forms of support (for e.g., k-nearest neighbors (k-NN) and l_p-norm based) generated for an input, using the training data to construct a justification for the prediction with that input. Through experiments conducted on simulated and real datasets, we demonstrate that our approach can provide reliability for individual predictions and characterize regions where such reliability cannot be ascertained.


翻译:随着深入学习的到来,机器学习(ML)领域已经超越了不同分类任务的人类层面的绩效。与此同时,迫切需要确定模型对单个样本的预测的可靠性并量化其可靠性。在工业控制和保健的安全关键领域应用这种模型时尤其如此。为了解决这一需要,我们将模型个别预测的可靠性问题与模型预测的表面不确定性联系起来。更具体地说,我们扩展了认知学中合理真实信仰(JTB)理论的范围,以研究人类获得的知识的有效性和局限性,使受监督的分类人员的知识的可靠性和局限性具有特征。我们分析了神经网络分类人员如何将其预测的可靠性与从网络投入和潜在空间收集的支持的特性联系起来。我们推测,JTB分析暴露了模型在判断方法上的表面不确定性(或无知),因此,我们只能将推论推论扩展为人类获得的知识的可靠性和局限性,从而确定受监督的分类人员的知识的可靠性和局限性。我们用各种模型的预测数据来分析神经网络分类。我们用各种模型来分析其预测的可靠性,我们用这种模型来证明这种模型的准确性,我们无法进行这种模拟数据。我们用各种模型来证明。我们进行这种模型进行这种模型的模型的模型,我们用模型进行这种模型的模型的模型的模型的模型进行这种模型进行的数据,我们用模型进行这种模型进行这种模型进行这种模型的模型进行这种模型进行这种模型进行这种模型进行这种模型进行这种模型进行这种模型进行这种模型,我们用是不能用来用来进行这种模型进行这种模型进行这种模型进行这种模型的模型的模型的模型的精确性,我们用来证明。我们用来证明。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年1月17日
Arxiv
0+阅读 · 2022年1月15日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员