Dense computer vision tasks such as object detection and segmentation require effective multi-scale feature representation for detecting or classifying objects or regions with varying sizes. While Convolutional Neural Networks (CNNs) have been the dominant architectures for such tasks, recently introduced Vision Transformers (ViTs) aim to replace them as a backbone. Similar to CNNs, ViTs build a simple multi-stage structure (i.e., fine-to-coarse) for multi-scale representation with single-scale patches. In this work, with a different perspective from existing Transformers, we explore multi-scale patch embedding and multi-path structure, constructing the Multi-Path Vision Transformer (MPViT). MPViT embeds features of the same size~(i.e., sequence length) with patches of different scales simultaneously by using overlapping convolutional patch embedding. Tokens of different scales are then independently fed into the Transformer encoders via multiple paths and the resulting features are aggregated, enabling both fine and coarse feature representations at the same feature level. Thanks to the diverse, multi-scale feature representations, our MPViTs scaling from tiny~(5M) to base~(73M) consistently achieve superior performance over state-of-the-art Vision Transformers on ImageNet classification, object detection, instance segmentation, and semantic segmentation. These extensive results demonstrate that MPViT can serve as a versatile backbone network for various vision tasks. Code will be made publicly available at \url{https://git.io/MPViT}.


翻译:在这项工作中,以与现有变换器不同的角度,我们探索多尺度补丁嵌入和多路径结构,建设多面图变换器(MPVIT) 。 MPVIT通过使用重叠的变换补接合嵌入,同时将相同大小(即,序列长度)的特征嵌入不同尺度的补丁。 不同尺度的调制器随后通过多种途径独立地输入变换器编码器的多阶段结构(即,细到粗),由此产生的特征是汇总的,使得与现有变换器不同,我们探索多尺度补丁嵌入和多路径结构,建设多面图变换器(MPVIT)。 MPVIT同时将相同大小(即,序列长度)的特征嵌入不同,同时使用重叠的变换换补嵌嵌嵌。 不同尺度的调制器可以通过多种路径独立地输入变换码的变换码器编码,从而能够在同一地段进行精细和剖析(多面图变换) 。 借助多样化、多层次图变变现式图变换图变式图解图解图解图解图解图解图解图解图解图解图解图解图解图解图段,通过不同的图解图解图解图解图解图解图解。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
3+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
39+阅读 · 2021年11月11日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
3+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
39+阅读 · 2021年11月11日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员