In many practical cases face detection on smartphones or other highly portable devices is a necessity. Applications include mobile face access control systems, driver status tracking, emotion recognition, etc. Mobile devices have limited processing power and should have long-enough battery life even with face detection application running. Thus, striking the right balance between algorithm quality and complexity is crucial. In this work we adapt 5 algorithms to mobile. These algorithms are based on handcrafted or neural-network-based features and include: Viola-Jones (Haar cascade), LBP, HOG, MTCNN, BlazeFace. We analyze inference time of these algorithms on different devices with different input image resolutions. We provide guidance, which algorithms are the best fit for mobile face access control systems and potentially other mobile applications. Interestingly, we note that cascaded algorithms perform faster on scenes without faces, while BlazeFace is slower on empty scenes. Exploiting this behavior might be useful in practice.
翻译:在许多实际情况下,智能手机或其他高便携设备上必须进行检测。应用程序包括移动面部控制系统、驾驶员状态跟踪、情绪识别等。移动设备处理能力有限,即使使用面部检测应用程序,其电池寿命也应该长得多。因此,在算法质量和复杂性之间取得正确的平衡至关重要。在这项工作中,我们调整了5种算法以适应移动。这些算法基于手动或神经网络特征,包括:Viola-Jones(Haar级联)、LBBP、HOG、MTCNN、BlazeFace。我们分析了不同输入图像分辨率设备上这些算法的推论时间。我们提供了指导,哪些算法最适合移动面部控制系统,并可能适合其他移动应用程序。有趣的是,我们注意到,连续算法在没有脸部的场面上运行速度更快,而BlazeFace在空场面的场景上速度较慢。我们也许可以在实践中使用。