6D pose estimation from a single RGB image is a challenging and vital task in computer vision. The current mainstream deep model methods resort to 2D images annotated with real-world ground-truth 6D object poses, whose collection is fairly cumbersome and expensive, even unavailable in many cases. In this work, to get rid of the burden of 6D annotations, we formulate the 6D pose refinement as a Markov Decision Process and impose on the reinforcement learning approach with only 2D image annotations as weakly-supervised 6D pose information, via a delicate reward definition and a composite reinforced optimization method for efficient and effective policy training. Experiments on LINEMOD and T-LESS datasets demonstrate that our Pose-Free approach is able to achieve state-of-the-art performance compared with the methods without using real-world ground-truth 6D pose labels.
翻译:6D代表对单一 RGB 图像的估算是计算机愿景中一项艰巨而关键的任务。 目前的主流深层模型方法采用2D图像,带有真实世界地面真相6D天体的附加说明,其收集相当繁琐和昂贵,在许多情况下甚至无法使用。 在这项工作中,为了摆脱6D说明的负担,我们将6D作为Markov 决策程序进行完善,并将仅有2D图像说明的强化学习方法强加给强化学习方法,通过微妙的奖励定义和综合强化优化方法提供高效率和高效益的政策培训信息,通过LINEMOD和T-LESS数据集实验表明,与不使用现实世界地面真相6D构成标签的方法相比,我们的无糖方法能够实现最先进的性能。