Our aim is to study the backward problem, i.e. recover the initial data from the terminal observation, of the subdiffusion with time dependent coefficients. First of all, by using the smoothing property of solution operators and a perturbation argument of freezing the diffusion coefficients, we show a stability estimate in Sobolev spaces, under some smallness/largeness condition on the terminal time. Moreover, in case of noisy observation, we apply a quasi-boundary value method to regularize the problem and then show the convergence of the regularization scheme. Finally, to numerically reconstruct the initial data, we propose a completely discrete scheme by applying the finite element method in space and backward Euler convolution quadrature in time. An \textsl{a priori} error estimate is then established. The proof is heavily built on a perturbation argument dealing with time dependent coefficients and some nonstandard error estimates for the direct problem. The error estimate gives a useful guide for balancing discretization parameters, regularization parameter and noise level. Some numerical experiments are presented to illustrate our theoretical results.
翻译:我们的目标是研究后向问题,即从终端观测中恢复在时间上依赖的系数的子扩散的初始数据。 首先,通过使用溶液操作员的平滑属性和冻结扩散系数的扰动参数,我们展示了Sobolev空间的稳定性估计,在终端时间的某些小/大条件下。此外,在噪音观测中,我们采用了准界限值方法来规范问题,然后显示正规化办法的趋同。最后,为了对初始数据进行数字重建,我们提出了一个完全独立的方案,在空间和落后的电动二次曲线中应用有限元素方法。然后确定了一个“前置”错误估计。证据大量建立在与时间系数和直接问题的某些非标准错误估计有关的扰动参数上。错误估计为平衡离散参数、正规化参数和噪声水平提供了有用的指南。一些数字实验用来说明我们的理论结果。