A Lite BERT (ALBERT) has been introduced to scale up deep bidirectional representation learning for natural languages. Due to the lack of pretrained ALBERT models for Korean language, the best available practice is the multilingual model or resorting back to the any other BERT-based model. In this paper, we develop and pretrain KoreALBERT, a monolingual ALBERT model specifically for Korean language understanding. We introduce a new training objective, namely Word Order Prediction (WOP), and use alongside the existing MLM and SOP criteria to the same architecture and model parameters. Despite having significantly fewer model parameters (thus, quicker to train), our pretrained KoreALBERT outperforms its BERT counterpart on 6 different NLU tasks. Consistent with the empirical results in English by Lan et al., KoreALBERT seems to improve downstream task performance involving multi-sentence encoding for Korean language. The pretrained KoreALBERT is publicly available to encourage research and application development for Korean NLP.
翻译:为了扩大对自然语言的深度双向代表制学习(ALBERT),引入了远程语言双向代表制学习(ALBERT),因为韩国语言缺乏经过预先培训的ALBERT模式,所以最佳可得做法是多语种模式,或者回到任何其他基于BERT的模式。在本文中,我们开发了单语语言的KoreALBERT模式,这是专门用于朝鲜语言理解的单语种ALBERT模式。我们引入了一个新的培训目标,即Word Consourment(WOP),并同时将现有的MLM和SOP标准用于相同的结构和模型参数。尽管我们经过培训的KoreALBERT模型参数(因此,培训速度要快得多)大大少于模型参数,但我们经过培训的KOreALBERT在6项不同的NLU任务上超越了BERT的对应标准。根据Lan等人的英语经验,KoreALBERT似乎改进了韩国语言多语种编码的下游任务绩效。经过培训的KoreALBERT公开用于鼓励韩国国家语言的研究和应用开发。