Gaussian processes (GPs) are well-known tools for modeling dependent data with applications in spatial statistics, time series analysis, or econometrics. In this article, we present the R package varycoef that implements estimation, prediction, and variable selection of linear models with spatially varying coefficients (SVC) defined by GPs, so called GP-based SVC models. Such models offer a high degree of flexibility while being relatively easy to interpret. Using varycoef, we show versatile applications of (spatially) varying coefficient models on spatial and time series data. This includes model and coefficient estimation with predictions and variable selection. The package uses state-of-the-art computational statistics techniques like parallelization, model-based optimization, and covariance tapering. This allows the user to work with (S)VC models in a computationally efficient manner, i.e., model estimation on large data sets is possible in a feasible amount of time.
翻译:Gausian 进程(GPs)是用空间统计、时间序列分析或计量经济学的应用来模拟依赖数据模型的著名工具。在本篇文章中,我们介绍了用于估算、预测和可变选择线性模型的R组合组合组合,该组合组合采用由GPs(即所谓的GP-基于SVC的模型)界定的空间差异系数(SVC)来进行估算、预测和可变选择线性模型。这些模型提供了高度的灵活性,同时相对容易解释。使用差异组合组合组合组合,我们展示了空间和时间序列数据上(随机)不同系数模型的多种应用。这包括预测和变量选择的模型和系数估计。该组合使用最新先进的计算统计技术,如平行化、基于模型的优化和共变式缩缩。这使用户能够以计算高效的方式与(S)VC模型合作,即大数据集的模型估计在可行的时间范围内是可能的。