Let $c$ be the constant such that the expected length of the Euclidean minimum spanning tree of $n$ random points in the unit square is $c \sqrt{n}$ in the limit, when $n$ goes to infinity. We improve the prior best lower bound of $0.6008 \leq c$ by Avram and Bertsimas to $0.6289 \leq c$. The proof is a by-product of studying the persistent homology of randomly $2$-colored point sets. Specifically, we consider the filtration induced by the inclusions of the two mono-chromatic sublevel sets of the Euclidean distance function into the bi-chromatic sublevel set of that function. Assigning colors randomly, and with equal probability, we show that the expected $1$-norm of each chromatic persistence diagram is a constant times $\sqrt{n}$ in the limit, and we determine the constant in terms of $c$ and another constant, $c_L$, which arises for a novel type of Euclidean minimum spanning tree of $2$-colored point sets.
翻译:设常数$c$满足单位正方形内$n$个随机点的欧几里得最小生成树期望长度在$n$趋于无穷时的极限为$c \sqrt{n}$。我们将Avram与Bertsimas先前的最佳下界$0.6008 \leq c$改进至$0.6289 \leq c$。该证明是研究随机二染色点集持久同调的副产品。具体而言,我们考虑由欧几里得距离函数的两个单色子水平集到该函数双色子水平集的包含关系所诱导的滤过结构。通过以等概率随机分配颜色,我们证明每个染色持久性图的期望$1$-范数在极限下为常数乘以$\sqrt{n}$,并以$c$及另一常数$c_L$(源于二染色点集的一种新型欧几里得最小生成树)的形式确定了该常数。