Gestures performed accompanying the voice are essential for voice interaction to convey complementary semantics for interaction purposes such as wake-up state and input modality. In this paper, we investigated voice-accompanying hand-to-face (VAHF) gestures for voice interaction. We targeted hand-to-face gestures because such gestures relate closely to speech and yield significant acoustic features (e.g., impeding voice propagation). We conducted a user study to explore the design space of VAHF gestures, where we first gathered candidate gestures and then applied a structural analysis to them in different dimensions (e.g., contact position and type), outputting a total of 8 VAHF gestures with good usability and least confusion. To facilitate VAHF gesture recognition, we proposed a novel cross-device sensing method that leverages heterogeneous channels (vocal, ultrasound, and IMU) of data from commodity devices (earbuds, watches, and rings). Our recognition model achieved an accuracy of 97.3% for recognizing 3 gestures and 91.5% for recognizing 8 gestures, excluding the "empty" gesture, proving the high applicability. Quantitative analysis also sheds light on the recognition capability of each sensor channel and their different combinations. In the end, we illustrated the feasible use cases and their design principles to demonstrate the applicability of our system in various scenarios.


翻译:声音伴随的手至脸手势对于语音交互来说非常重要,因为这种手势通常被用于传达各种信息,如唤醒状态和输入方式等。本文针对声音交互中的手至脸手势进行了研究,因为这种手势与语音紧密相关,并产生显著的声学特征(例如阻碍声音传播)。我们进行了一项用户研究,探索了手至脸手势的设计空间,首先收集了候选手势,然后在不同维度(例如接触位置和类型)上进行了结构分析,总共输出了8种具有良好可用性和最小混淆的声音伴随手至脸手势。为了促进声音伴随手至脸手势的识别,我们提出了一种新的跨设备感应方法,利用来自商品设备(耳塞、手表和戒指)的异构信道(语音、超声波和IMU)的数据。我们的识别模型在识别3个手势时达到了97.3%的准确率,在识别8个手势(不包括“空”手势)时达到了91.5%的准确率,证明了其高度适用性。定量分析还揭示了每个传感器通道及其不同组合的识别能力。最后,我们阐述了可行的使用案例及其设计原则,以展示我们的系统在各种场景中的适用性。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员