We propose a learning dynamics to model how strategic agents repeatedly play a continuous game while relying on an information platform to learn an unknown payoff-relevant parameter. In each time step, the platform updates a belief estimate of the parameter based on players' strategies and realized payoffs using Bayes's rule. Then, players adopt a generic learning rule to adjust their strategies based on the updated belief. We present results on the convergence of beliefs and strategies and the properties of convergent fixed points of the dynamics. We obtain sufficient and necessary conditions for the existence of globally stable fixed points. We also provide sufficient conditions for the local stability of fixed points. These results provide an approach to analyzing the long-term outcomes that arise from the interplay between Bayesian belief learning and strategy learning in games, and enable us to characterize conditions under which learning leads to a complete information equilibrium.
翻译:我们建议一种学习动态,以模拟战略代理人如何反复不断地玩耍游戏,同时依靠一个信息平台来学习一个未知的得益相关参数。在每一个时间步骤中,该平台更新一个基于球员战略和利用拜斯规则实现得益的参数的信念估计。然后,球员采用一个通用学习规则来根据更新的信念调整其战略。我们介绍了关于信念和战略的趋同以及动态中趋同固定点的特性的结果。我们为全球稳定固定点的存在获得了足够和必要的条件。我们还为固定点的当地稳定提供了充分的条件。这些结果为分析巴伊西亚信仰学习和战略在游戏中学习之间的相互作用所产生的长期结果提供了方法,并使我们能够确定学习导致完全信息平衡的条件。